What are the coordinates of three points that lie on both planes of 20x+15y+12z=60 and 10x+30y+12z=60
20x + 15y + 12z = 60 ⇒ 20x + 15y + 12z = 60 10x + 30y + 12z = 60 ⇒ 20x + 60y + 24z = 120 -45y - 12z = -60 -45y + 45y - 12z = -60 + 45y -12z = -60 + 45y -12 -12 z = 5 - 45/12y 20x + 15y + 12(5 - 45/12y) = 60 20x + 15y + 12(5) - 12(45/12y) = 60 20x + 15y + 60 - 45y = 60 20x + 15y - 45y + 60 = 60 20x - 30y + 60 = 60 -60 -60 20x - 30y = 0 20x - 20x - 30y = 0 - 20x -30y = -20x -30 -30 y = 2x/3 20x + 15(2x/3) + 12(5 - 45/12y) = 60 20x + 10x + 60 - 45y = 60 30x - 45y + 60 = 60 -60 -60 30x - 45y = 0 30x - 45y + 45y = 0 + 45y 30x = 45y 30 30 x = 3/2y 20(3/2y) + 15(2x/3) + 12(5 - 45/12y) = 60 30y + 10x + 60 - 45y = 60 10x + 30y - 45y + 60 = 60 10x - 15y + 60 = 60 -60 -60 10x - 15y = 0 10(3/2y) + 30(2x/3) + 12(5 - 45/12y) = 60 15y + 20x + 60 - 45y = 60 20x + 15y - 45y + 60 = 60 20x - 30y + 60 = 60 -60 -60 20x - 30y = 0 10x - 15y = 0 ⇒ 20x - 30y = 0 20x - 30y = 0 ⇒ 20x - 30y = 0 -60y = 0 -60 -60 y = 0 10x - 15(0) = 0 10x - 0 = 0 +0 +0 10x = 0 10 10 x = 0 20x + 15y + 12z = 60 20(0) + 15(0) + 12z = 60 0 + 0 + 12z = 60 0 + 12z = 60 12z = 60 12 12 z = 5 (x, y, z) = (0, 0, 5)