Mathematics
sahraie
18

Find the derivative of: f(x)= sqrt(x) - 1/sqrt(x) Please include the process.

+1
(2) Answers
samuelodumgyimah

f(x) = x^1/2 - x^-1/2 f'(x) = 1/2*x^-1/2 - (-1/2*x^-3/2) f'(x) = 1/2sqrt(x) + 1/2(sqrt(x))^3 f'(x) = x + 1/2(sqrt(x))^3

Genna57

remember that x^-m=1/(x^m) first, conver to exponential [latex] \sqrt{x} - \frac{1}{ \sqrt{x} } =x^ \frac{1}{2}-x^ \frac{-1}{2} [/latex] now do the thingummy (1/2)(x^(-1/2))-(-1/2)(x^(-3/2)) convert to fraction form [latex] \frac{1}{2 \sqrt{x} } + \frac{1}{2 \sqrt{x^\frac{3}{2}} } [/latex] [latex] \frac{1}{2 \sqrt{x} } + \frac{1}{2x \sqrt{x} } [/latex] dat is the answer

Add answer